An exact theory of nonlinear waves on a Lagrangian-mean flow

نویسنده

  • M. E. MCINTYRE
چکیده

An exact and very general Lagrangian-mean description of the back effect of oscillatory disturbances upon the mean state is given. The basic formalism applies to any problem whose governing equations are given in the usual Eulerian form, and irrespective of whether spatial, temporal, ensemble, or ‘two-timing ’ averages are appropriate. The generalized Lagrangian-mean velocity cannot be defined exactly as the ‘mean following a single fluid particle’, but in cases where spatial averages are taken can easily be visualized, for instance, as the motion of the centre of mass of a tube of fluid particles which lay along the direction of averaging in a hypothetical initial state of no disturbance. The equations for the Lagrangian-mean flow are more useful than their Eulerianmoan counterparts in significant respects, for instance in explicitly representing the effect upon mean-flow evolution of wave dissipation or forcing. Applications to irrotational acoustic or water waves, and to astrogeophysical problems of waves on axisymmetric mean flows are discussed. In the latter context the equations embody generalizations of the Eliassen-Palm and Charney-Drazin theorems showing the effects on the mean flow of departures from steady, conservative waves, for arbitrary, finite-amplitude disturbances to a stratified, rotating fluid, with allowance for selfgravitation as well as for an external gravitational field. The equations show generally how the pseudomomentum (or wave ‘momentum ’) enters problems of mean-flow evolution. They also indicate the extent to which the net effect of the waves on the mean flow can be described by a ‘radiation stress’, and provide a general framework for explaining the asymmetry of radiation-stress tensors along the lines proposed by Jones (1973).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On non-dissipative wave–mean interactions in the atmosphere or oceans

Idealized model examples of non-dissipative wave–mean interactions, using smallamplitude and slow-modulation approximations, are studied in order to re-examine the usual assumption that the only important interactions are dissipative. The results clarify and extend the body of wave–mean interaction theory on which our present understanding of, for instance, the global-scale atmospheric circulat...

متن کامل

Explicit wave-averaged primitive equations using a Generalized Lagrangian Mean

The generalized Langrangian mean theory provides exact equations for general wave-turbulence-mean flow interactions in three dimensions. For practical applications, these equations must be closed by specifying the wave forcing terms. Here an approximate closure is obtained under the hypotheses of small surface slope, weak horizontal gradients of the water depth and mean current, and weak curvat...

متن کامل

Combined Eulerian-Lagrangian or Pseudo-Lagrangian Descriptions of Waves Caused by an Advancing Free Surface Disturbance

We develop a new methodology for the numerical modeling of nonlinear free surface waves, caused by an advancing free surface disturbance, based on combining Lagrangian and Eulerian, or pseudoLagrangian, methods for the time updating of free surface geometry and motion. We solve potential flow equations with a threedimensional (3D) higher-order Boundary Element Method (BEM; Grilli et al., 2000, ...

متن کامل

Exact Description of Rotational Waves in an Elastic Solid

Conventional descriptions of transverse waves in an elastic solid are limited by an assumption of infinitesimally small gradients of rotation. By assuming a linear response to variations in orientation, we derive an exact description of a restricted class of rotational waves in an ideal isotropic elastic solid. The result is a nonlinear equation expressed in terms of Dirac bispinors. This resul...

متن کامل

Noether Symmetry in f(T) Theory at the anisotropic universe

As it is well known, symmetry plays a crucial role in the theoretical physics. On other hand, the Noether symmetry is a useful procedure to select models motivated at a fundamental level, and to discover the exact solution to the given lagrangian. In this work, Noether symmetry in f(T) theory on a spatially homogeneous and anisotropic Bianchi type I universe is considered. We discuss the Lagran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1978